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ABSTRACT: High levels of lipoprotein(a) [Lp(a)], an apoB100-containing lipoprotein, are an independent and causal risk factor 
for atherosclerotic cardiovascular diseases through mechanisms associated with increased atherogenesis, inflammation, 
and thrombosis. Lp(a) is predominantly a monogenic cardiovascular risk determinant, with ≈70% to ≥90% of interindividual 
heterogeneity in levels being genetically determined. The 2 major protein components of Lp(a) particles are apoB100 
and apolipoprotein(a). Lp(a) remains a risk factor for cardiovascular disease development even in the setting of effective 
reduction of plasma low-density lipoprotein cholesterol and apoB100. Despite its demonstrated contribution to atherosclerotic 
cardiovascular disease burden, we presently lack standardization and harmonization of assays, universal guidelines for 
diagnosing and providing risk assessment, and targeted treatments to lower Lp(a). There is a clinical need to understand 
the genetic and biological basis for variation in Lp(a) levels and its relationship to disease in different ancestry groups. This 
scientific statement capitalizes on the expertise of a diverse basic science and clinical workgroup to highlight the history, 
biology, pathophysiology, and emerging clinical evidence in the Lp(a) field. Herein, we address key knowledge gaps and 
future directions required to mitigate the atherosclerotic cardiovascular disease risk attributable to elevated Lp(a) levels.
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Cardiovascular disease (CVD) is the leading cause of 
death and disability worldwide.1 Advances over the 
past 70 years have led to the identification of com-

mon and novel CVD risk factors, and the introduction of 
many pharmacological interventions for use in primary 
and secondary prevention, as well. Despite significant 
progress, there remains substantial residual CVD risk, 
even among well-treated groups.2 The role of apolipo-
protein B100 (apoB) containing lipoproteins as the cen-
tral determinants of atherogenesis and risk for CVD is 
well established.3 The apoB concentration in plasma is a 
marker of both cardiovascular risk and disease severity.4 
Lipoprotein(a) [Lp(a)] is an apoB-containing lipoprotein 

bound to a hydrophilic, highly glycosylated protein called 
apolipoprotein(a) [apo(a)]5,6 (Figure, see location a).

Epidemiological, genome-wide association, and Men-
delian randomization data7–11 provide clear support for 
a causal role for elevated Lp(a) in the development of 
atherosclerotic cardiovascular disease (ASCVD).12 What 
is defined as high Lp(a) levels can differ, depending on 
(1) the assay and units of measurement (milligrams per 
deciliter versus nanomoles per liter) used; (2) the popula-
tion ancestry; and (3) the underlying disease and clinical 
characteristics of the cohort. These factors have made 
it difficult to establish universal thresholds for clinical 
use.13,14 Our current ability to lower Lp(a) with approved 
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CLINICAL STATEM
ENTS AND 

GUIDELINES

apoB and low-density lipoprotein cholesterol (LDL-C)–
lowering therapies15 may not be optimal for reducing the 
cardiovascular risk associated with high Lp(a) levels.16

Novel therapies for Lp(a) lowering that target hepatic 
synthesis of apo(a) are in various phases of clinical trials 
(NCT04606602-SLN360, NCT04023552-TQJ230, 
and NCT04270760-AMG 890). In addition, outcome 
studies using lipoprotein apheresis to remove Lp(a) 
and other apoB-containing lipoproteins from plasma 
are ongoing (NCT02791802). The completion of these 
studies will provide critical insight into the cardiovascular 
benefits of lowering Lp(a) and provide further evidence 
supporting or refuting its role as a causal risk factor.

This consensus statement, written by a multidisci-
plinary group of experts, will highlight the established 
and emerging biology, pathophysiology, and clinical 
epidemiology of Lp(a). It will identify key gaps in our 

understanding of the role of Lp(a) in ASCVD. The over-
all goal is to provide a rationale for targeted research 
efforts that can provide clinical direction for risk reduc-
tion, encourage appropriate screening strategies, and 
highlight the need for further studies of Lp(a) biology.

HISTORICAL PERSPECTIVE
In 1963, the geneticist Kåre Berg identified a unique 
antigen in the low-density lipoprotein (LDL) fraction of 
human serum that he called apolipoprotein(a).5 Studying 
families, Berg soon determined the strong genetic control  
of Lp(a) levels, and by 1974, he had linked the presence of 
Lp(a) to coronary heart disease (CHD).17 Confirmation of 
the association of Lp(a) with CHD required improvements 
in the assays to measure Lp(a),18 but by the mid-1980s, 
results from numerous small to modest retrospective and 

Figure. Lp(a) structure, properties, regulation, and relation to disease.
Lipoprotein(a) [Lp(a)] consists of a lipid-rich domain, primarily cholesteryl esters, and apolipoprotein(a) [apo(a)]. Apo(a) binds to apolipoprotein 
B100 (apoB) via a single disulfide bond (a) at a location close the low-density lipoprotein receptor binding site of apoB (b). Apo(a) contains 
repeated kringle (K) structures (KIV and KV), comparable with those in plasminogen. There are 10 different subtypes of apo(a) KIV, where 
type 2 is present in multiple copies, resulting in a highly variable molecular mass (300–800 kDa). Apo(a) is compositionally unique among 
apolipoproteins with a high carbohydrate content (≈28%). Proinflammatory and proatherogenic oxidized phospholipids bind to apo(a) KIV type 
10 (c) and can also be found in the lipid phase. Apo(a) contains a protease domain (d) that lacks enzymatic activity. The Lp(a) concentration 
is heterogeneous and, to a major extent, controlled by genetics, inversely related to the copy number variation in the LPA gene. Other factors 
such as ethnicity and race and medical and environmental conditions also play roles in Lp(a) regulation. Lp(a) has been associated with 
increased risks of atherosclerosis, thrombosis, and aortic valve calcification. 
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cross-sectional studies supported Berg’s initial observa-
tion.19 Results from some early prospective studies sug-
gested a central role for Lp(a) in CVD,20,21 whereas others 
did not.22 Strong genetic evidence supporting Lp(a) as an 
independent and potentially causal risk factor for ASCVD 
was reported in large studies published in 2009,9,23 in sup-
port of earlier smaller studies demonstrating associations of 
Lp(a) phenotypes/genotypes with CVD.24,25

In parallel with the early population-based studies, 
efforts by several groups resulted in the isolation and 
purification of Lp(a),26 which provided key insights into 
the structural and biochemical characteristics of this lipo-
protein. In the late 1980s, the cloning and sequencing 
of a cDNA corresponding to the gene encoding apo(a) 
(now designated LPA) demonstrated that LPA had 
evolved through duplication of the plasminogen (PLG) 
gene, providing important clues to some of the proposed 
pathophysiological mechanisms of Lp(a).27,28 Although 
PLG encodes 5 kringles (80–90 amino acid–long tri-
ple-looped protein structures) and a fibrinolytic prote-
ase region, LPA in humans lacks sequences encoding 
PLG kringles I to III and encodes 10 kringle IV subtypes 
(KIV1 through KIV10) similar to PLG kringle IV, followed 
by 1 PLG kringle V–like domain, and an inactive protease 
region (Figure, locations a and d).28

DETERMINANTS OF PLASMA Lp(a) 
LEVELS: GENETICS, PRODUCTION, AND 
CLEARANCE
Plasma Lp(a) levels arise from codominant expression of 
2 LPA alleles. As such, in any given individual, the Lp(a) 
plasma level represents the sum of levels contributed by 
each LPA allele. Most individuals have 2 detectable cir-
culating Lp(a) isoforms, each arising from a differently 
sized apo(a); the smaller isoform is usually present at 
higher levels in plasma. Small amounts of non–apoB-
bound apo(a) fragments in plasma and in urine have 
been reported, and their physiological relevance remains 
unknown.29–33

Lp(a) levels are ≈70% to ≥90% genetically deter-
mined. The KIV2 copy number variant is inversely related 
to the Lp(a) concentration and is estimated to associate 
with 19% to 69% of interindividual heterogeneity in Lp(a) 
concentrations.34 In addition, numerous single nucleotide 
polymorphisms (SNPs) in the LPA locus strongly asso-
ciate with Lp(a) levels.16 Although some are in linkage 
disequilibrium with the KIV2 copy number variant, SNPs 
independently associated with both high and low levels 
of Lp(a) have been reported.35

Outside the LPA gene locus, the APOE ε2 allele asso-
ciates with lower Lp(a) levels, explaining an estimated 
0.5% of the Lp(a) concentration variation.35 Recent 
genome-wide association studies have also pointed to 
additional relationships of Lp(a) levels with APOH36; this 

gene codes β2-glycoprotein 1 that has been found to be 
associated with PCSK9 (proprotein convertase subtilisin 
kexin type 9) and binds to apo(a) KIV2.37 β2-Glycoprotein 
1 is a known participant in coagulation.36,38 The contri-
bution of other genes to the regulation of Lp(a) levels 
requires further investigation. In the absence of various 
clinical conditions,39 levels of Lp(a) have not been shown 
to substantially change across the life course, although 
some variability occurs, as documented by intraindi-
vidual temporal variability in serial measurements from 
placebo-treated subjects in clinical trials.40 Results from 
the latter study demonstrate intraindividual biological 
variability of Lp(a) up to 20% suggesting that, for some 
patients, a mean of 2 Lp(a) determinations be obtained 
at different times to refine ASCVD risk stratification. The 
distribution of Lp(a) levels reported in large cohorts var-
ies >100-fold,16 with the highest variation observed in 
populations of European descent in which Lp(a) levels 
are highly positively skewed. In general, population Lp(a) 
levels are reported as median values because they are 
not normally distributed.

It is well established that Lp(a) levels differ across 
self-reported racial and ethnic groups. Black individuals 
of African descent and South Asian populations have 
higher median Lp(a) levels than White or East Asian indi-
viduals.39 The difference between Black individuals of 
African descent and White individuals may result primar-
ily from higher levels of Lp(a) associated with medium 
apo(a) alleles in people of African descent compared 
with White individuals. In White individuals, high Lp(a) 
levels are associated with small alleles.41,42 For several 
SNPs that are in linkage disequilibrium with LPA allele 
sizes, the associations with Lp(a) levels in plasma dif-
fer between different ancestry groups.43,44 Recently pub-
lished data from diverse cohorts, such as the ARIC study 
(Atherosclerosis Risk in Communities),45,46 the MESA 
study (Multi-Ethnic Study of Atherosclerosis),47 and the 
MASALA study (Mediators of Atherosclerosis in South 
Asians Living in America),48 link high plasma Lp(a) levels 
to increased ASCVD risk in various populations. However, 
there is large variability between studies in the methods 
used to measure Lp(a), making it difficult to compare 
findings across different populations.

The assembly of Lp(a) from apo(a) and apoB 
expressed in hepatocytes and the pathways for Lp(a) 
removal from the circulation are not completely defined. 
Several mechanisms may contribute to the efficiency 
of Lp(a) synthesis.49 The best studied is apo(a) isoform 
size–dependent variation in the secretion rate of apo(a). 
Large apo(a) isoforms are retained longer in the endo-
plasmic reticulum, despite being folded at the same rate 
as smaller isoforms and are subjected to increased deg-
radation by the proteasome. This mechanism contrib-
utes to the general inverse correlation between apo(a) 
isoform size and plasma Lp(a) levels.49 However, other 
mechanisms may contribute to plasma Lp(a) levels 

D
ow

nloaded from
 http://ahajournals.org by on Septem

ber 17, 2022



CLINICAL STATEM
ENTS AND 

GUIDELINES
Reyes-Soffer et al Lipoprotein(a) and Atherosclerotic Cardiovascular Disease

Arterioscler Thromb Vasc Biol. 2022;42:e48–e60. DOI: 10.1161/ATV.0000000000000147 January 2022  e51

through isoform-dependent or independent mechanisms, 
including the modulation of LPA expression, mRNA sta-
bility of differently sized LPA transcripts, and isoform 
size–dependent regulation of apo(a) translation effi-
ciency. The assembly of Lp(a) particles involves a 2-step 
process whereby initial lysine-dependent noncovalent 
interactions between apo(a) and apoB precede the for-
mation of covalent disulfide bonds between apo(a) and 
apoB that result in Lp(a) particles.49 The covalent bond-
ing of apo(a) to apoB-containing lipoproteins occurs 
extracellularly (on, or proximal to, the plasma membrane), 
possibly using an oxidase-like enzyme secreted from 
the cells.50,51 The domains involved in the noncovalent 
association between apo(a) and apoB have been identi-
fied: respectively, weak lysine binding sites in apo(a) and 
lysine-containing sequences in the N-terminal domain of 
apoB, suggesting the potential for inhibition of this first 
step in Lp(a) assembly using small molecules targeted 
to the lysine-binding domains of apo(a).49 There is also 
ongoing controversy about the nature of the apoB-con-
taining lipoprotein particle that binds to apo(a) to create 
Lp(a): whether apo(a) during its lifespan in circulation 
may exchange between more than 1 apoB-containing 
lipoprotein particle, and the role of internalized and recy-
cled apo(a) and apoB-containing lipoproteins.52 However, 
to date, a significant measurable pool of free apo(a) in 
plasma has not been identified, which suggests that free 
circulating apo(a) and recycling of apo(a) within the cir-
culation may have a minor role in Lp(a) metabolism.52

Initial metabolic studies in humans to elucidate the 
regulation of Lp(a) were performed by various laboratories 
using radiolabeled apo(a).6 Combined with recent studies 
using stable isotopes, human studies show evidence for 
both clearance and production of apo(a) contributing to 
plasma levels of Lp(a).52 The liver has been identified as 
the primary site of Lp(a) catabolism; however, the receptors 
involved await definitive identification.53,54 The LDL recep-
tor may play a role in Lp(a) uptake under certain circum-
stances, such as the use of statins with a PCSK9 inhibitor 
in patients with elevated Lp(a).55 However, results from ear-
lier turnover studies showed similar rates of radiolabeled 
Lp(a) clearance in homozygous LDL receptor deficiency 
compared to those with normal LDL receptor activity.56 
A role for plasminogen receptors including Plg-RKT has 
also been suggested,57 although human data are lacking. 
Additional hepatic receptors such as SR-B1 (scavenger 
receptor class B type 1), LRP1, and LRP8 (low-density 
lipoprotein receptor–related protein-1 and -8)54 could 
also play a role in Lp(a) clearance, although their relative 
contributions to Lp(a) catabolism in humans are unknown. 
Nonetheless, levels of circulating Lp(a), apo(a) isoform 
size, Lp(a)-associated proteins, and Lp(a) lipid content 
may modulate selectivity for particular receptors. Data from 
recently published studies suggest that additional proteins 
associated with Lp(a) (ApoH, ApoCIII, ApoE) may also play 
a role in the clearance of the Lp(a) particle.36,58,59

The restricted species distribution of Lp(a) (ortho-
logues of apo(a) are only found in humans, Old World 
monkeys, apes, and hedgehogs) poses challenges to the 
design and interpretation of animal model data. Of note, 
only human Lp(a) contains a strong lysine binding site in 
apo(a) KIV10 which may limit the applicability of findings 
about the assembly of Lp(a) from other species. The lack 
of a proper animal model has hindered elucidation of the 
true pathophysiological mechanisms of Lp(a) and, hence, 
the identification of therapeutic targets. In Table 1, we 
highlight some priorities for ongoing knowledge gaps.

QUANTIFICATION OF Lp(a) IN HUMAN 
PLASMA
Determination of Lp(a) levels in clinical chemistry laborato-
ries is performed by immunoassays using antibody specific 
to apo(a) with 2 major problems affecting the accuracy 
of Lp(a) results and their clinical interpretation. The first 
problem, related to the size variability of apo(a), results in 
under- or overestimation of Lp(a) levels measured by dif-
ferent immunoassays as clearly elucidated using an ELISA 
method based on a monoclonal antibody that does not rec-
ognize the variably repeated KIV2 motifs of apo(a).60 How-
ever, recent commercially available methods based on the 
use of 5 independent calibrators with a large range of Lp(a) 
levels and a suitable distribution of apo(a) isoforms are able 
to quantify Lp(a) with a reduced impact of apo(a) size if the 
values of the assay calibrators are well validated.18 The use 
of this methodology on automated analyzers results in high 
precision although the assays are not able to fully eliminate 
the impact of apo(a) size variability in all evaluated samples. 
However, considering the large distribution of Lp(a) levels 
in populations, the use of Lp(a) levels measured by these 
assays for risk stratification should not result in high num-
bers of misclassifications. Studies specifically addressing 
this issue need to be performed.

The second problem is that, at present, there are 2 
approaches to immunoassay calibration resulting in 2 dif-
ferent units for reporting Lp(a) results. The first highly sen-
sitive assay for measuring Lp(a) was reported in the 1970s 
by Albers et al61 before the structure of Lp(a) was eluci-
dated. The authors purified Lp(a) from plasma of a single 
donor and the protein, lipid, and carbohydrate components 
were individually measured. The sum of all the components 

Table 1. Priorities to Address Current Gaps in Knowledge

Determine how the genetic architecture of LPA accounts for differences 
in Lp(a) levels in different ancestry groups. Studies using properly pro-
cessed samples and reliable methods for determining Lp(a) levels and 
apolipoprotein(a) isoform size will be required for this purpose.

Develop a complete understanding of apolipoprotein(a) synthesis and Lp(a) 
particle assembly by using sophisticated technologies, such as cryogenic 
electron microscopy.

Determine the mechanism(s) of Lp(a) clearance from the circulation and 
identify the key liver and extrahepatic receptors that are relevant to humans.

Lp(a) indicates lipoprotein(a).
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of this purified Lp(a) were assigned a value in milligrams 
per deciliter and used as the assay calibrator. All the subse-
quently developed immunoassays were calibrated in milli-
grams per deciliter of total Lp(a) mass although the assays 
only measured the apo(a) component of Lp(a). This his-
toric approach to assay calibration, which assumed that the 
mass of the individual Lp(a) components was constant in 
all the individuals, is unacceptable, in particular, considering 
the well-known extreme size variability of apo(a).

The gold standard ELISA method60 was calibrated in 
nanomoles per liter of apo(a), thus reflecting the num-
ber of Lp(a) particles. Recognizing the scientific valid-
ity of this approach, a value in nanomoles per liter was 
assigned to the reference material SRM-2B developed 
by the International Federation of Clinical Chemistry. Fol-
lowing the National Heart, Lung, and Blood Institute rec-
ommendations for expressing Lp(a) results in nanomoles 
per liter,12,62 several commercially available methods have 
been introduced with values in nanomoles per liter trace-
able to the International Federation of Clinical Chem-
istry reference material. Several Lp(a) guidelines and 
statements have recommended reporting Lp(a) values 
in nanomoles per liter.63–65 The existence of 2 different 
units for expressing Lp(a) levels is confusing to clinicians 
and patients and there is no unbiased conversion fac-
tor from milligrams per deciliter to nanomoles per liter 
or vice versa. Improvements in methods for measuring 
Lp(a), the traceability of the measured value to a com-
mon reference material, and the reporting of values in 
nanomoles per liter are essential steps toward crucially 
needed harmonization of Lp(a) assays. A recently pub-
lished article66 describes the development and validation 
of a mass spectrometry method as a proposed candidate 
reference method for Lp(a) standardization. The high 
correlation of values with those obtained by the gold 
standard ELISA and the excellent recovery of the ref-
erence material indicate that no significant changes in 
calibration are expected for methods that are traceable 
to the World Health Organization/International Federa-
tion of Clinical Chemistry Reference Material SRM-2B.

The cholesterol content of Lp(a) is included in all clini-
cal assays that quantify LDL-C, including the reference 
method β-quantification.18 Therefore, some studies have 
tried to account for this by subtracting, from LDL-C, 30% 
of the mass concentration (milligrams per deciliter) of 
Lp(a). Results from a recent study in a small population 
of subjects with high Lp(a) demonstrated a significant 
variability in the amount of cholesterol in isolated Lp(a) 
particles.67 These recent data confirm that estimating 
the cholesterol content of Lp(a) by a fixed percentage 
of measured Lp(a) in milligrams per deciliter requires 
several assumptions that limit its use in clinical practice. 
Lp(a) is measured by immunochemical methods and 
therefore even assays reporting Lp(a) values in milli-
grams per deciliter only estimate the total mass of the 
particle. The concentration of apoB and apoB-containing 

lipoprotein particles, including LDL, are more highly 
associated with ASCVD risk than mass of LDL-C or size 
of LDL particles.3 Moreover, a recently completed study 
showed that, in statin-treated patients, elevated apoB 
and non–high-density lipoprotein cholesterol, but not 
LDL-C, were associated with residual risk of all-cause 
mortality and myocardial infarction.68 Additional work is 
needed to encourage the use of standardized methods 
to measure Lp(a). In Table 2, we provide clinical use con-
siderations for Lp(a) measurements, and in Table 3, we 
provide insight on the impact of Lp(a) to the plasma pool 
of apoB. It is important to note that Lp(a) is an ASCVD 
risk modifier and contributes to residual ASCVD risk at 
all levels of LDL-C and ApoB.

Table 2. Clinical Use of Lipoprotein(a) Measurements

Why would a clinician measure Lp(a)?

  Elevated Lp(a) is a common independent atherosclerotic cardiovascu-
lar disease risk factor that is not measured in the majority of affected 
patients.

  The only currently available method to know if someone has elevated 
Lp(a) is to measure Lp(a) with a simple blood test that is relatively inex-
pensive.

  Awareness of the presence of elevated Lp(a) is important, because high 
Lp(a) increases atherosclerotic cardiovascular disease risk and could 
inform clinical decision-making regarding risk management.

  Cascade screening of family members of patients with elevated Lp(a) 
may identify additional individuals with elevated Lp(a) because of its auto-
somal codominant inheritance pattern.

How should one measure Lp(a)?

 Lp(a) should be measured with:

  An isoform-insensitive assay 

   Assay that is traceable to the internationally accepted calibrator (World 
Health Organization/International Federation of Clinical Chemistry Ref-
erence Material SRM-2B) 

  Assay that is reported in nanomoles per liter (nmol/l). 

  If measurements are not uniformly calibrated, one cannot compare mea-
surements generated by different assays.

Lp(a) indicates lipoprotein(a).

Table 3. How Can a Clinician Gauge the Proportion of apoB-
Containing Lipoproteins That Is Actually Lp(a)?

1. ApoB levels have been shown to be better predictors than low-density 
lipoprotein cholesterol to estimate incident and residual cardiovascular risk.3,68

2. By measuring total apoB in blood, the clinicians can calculate the pro-
portion of apoB-containing lipoproteins attributable to Lp(a).
3. Unlike Lp(a), it is easy to convert apoB levels from milligrams per decili-
ter (mg/dL) to nanomoles per liter (nmol/L).
4. When apoB levels are available, clinicians can calculate how much of 
the plasma apoB is Lp(a) by converting the total apoB levels from milligrams 
per deciliter to nanomoles per liter by multiplying by 20.
The clinician can then divide the plasma Lp(a) levels in nanomoles per liter 
by the plasma apoB levels in nanomoles per liter and derive the percent of 
apoB that is in Lp(a). This conversion allows the clinician to under-
stand the contribution of Lp(a) to apoB levels.

Example: If apoB is 100 mg/dL, this is ≈2000 nmol/L of apoB. Therefore, if 
the reported Lp(a) concentration is 20 nmol/L (the median level in the UK 
BioBank69), Lp(a)-apoB comprises 1% of total plasma apoB. 

If the Lp(a) concentration is 200 nmol/L, Lp(a) is 10% of total apoB. If Lp(a) 
is 600 nmol/L, Lp(a)-apoB is 30% of total apoB. 

If total apoB is lowered by treatments without a change in Lp(a), the latter 
comprises a greater percent of total apoB.

apo(B) indicates apolipoprotein B100; and Lp(a), lipoprotein(a).
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GENETIC APPROACHES TO 
ASCERTAINING Lp(a) ATTRIBUTABLE 
RISK
Its highly genetically determined levels make Lp(a) an 
excellent candidate for Mendelian randomization stud-
ies. In recent years, studies examining associations of 
LPA genotypes with Lp(a) levels and disease risk have 
provided supporting evidence for a causal relationship 
between high Lp(a) levels and ASCVD.16 Large genetic 
epidemiological studies have documented strong, graded 
associations of high Lp(a) levels and corresponding LPA 
risk genotypes with increased risk of CHD and calcific 
aortic valvular disease (CAVD). In key studies including a 
large classic Mendelian randomization study (N>40 000) 
with data on Lp(a) levels and KIV2 genotypes, each 
2-fold higher level of genetically determined Lp(a) lev-
els was associated with 22% greater risk of myocardial 
infarction.23 In a large case-control study including 3100 
CHD cases genotyped for ≈49 000 genetic variants in 
2100 candidate genes, 2 LPA SNPs had the strongest 
association with risk of CHD of all SNPs tested; SNP 
carriers versus noncarriers had higher Lp(a) levels and 
a lower number of KIV2 repeats.9 Of note, LPA SNPs 
associated with Lp(a) levels independently of apo(a) iso-
form size have been associated with CHD.35

In 2013, a genome-wide association study demon-
strated an association of a particular SNP in the LPA 
locus with CAVD with an odds ratio of 2.05 per allele,70 
an even greater risk than that reported for CHD.9 Sub-
sequent prospective data from 2 combined Danish Men-
delian randomization studies71  and the EPIC-Norfolk 
study (European Prospective Investigation into Cancer 
Norfolk)72 cohorts supported these results. A post hoc 
analysis of the ASTRONOMER randomized controlled 
trial (Effects of Rosuvastatin on Aortic Stenosis Pro-
gression), in which statin therapy did not slow progres-
sion of aortic stenosis, found accelerated progression 
of aortic stenosis in the top tertile of Lp(a) levels.73 LPA 
remains the only monogenic risk factor identified for 
aortic stenosis.

Associations of Lp(a) with cerebrovascular disease 
and stroke are less clear. Although a recent Mendelian 
randomization analysis of data from 2 combined Danish 
cohorts suggests that Lp(a) is a risk factor for stroke 
(albeit not nearly as strong as for coronary disease or 
CAVD),74 previous analyses of smaller cohorts have not 
found an association.75 However, a role for Lp(a) in risk 
for stroke is further supported by a large genetic study 
(N>100 000) in which 4 LPA SNPs, associated with 
low Lp(a) levels, were associated with 13% lower risk 
of stroke per 1 SD genetically lower Lp(a) levels. This 
same study observed ≈30% to 40% lower risk of CHD, 
peripheral artery disease, and CAVD.76 In other studies, 
Lp(a) has been suggested as an independent risk factor 
for prevalent lower extremity atherosclerotic disease,75,77 

with risk alleles predictive of peripheral artery disease as 
well.76,78 Recent studies have also described a greater risk 
of cardiovascular and all-cause mortality for the highest 
Lp(a) levels/lowest number of LPA KIV2 repeats.79

The association of LPA genotypes that determine 
circulating Lp(a) levels with risk of ASCVD represents 
strong evidence of causality, because genotype-disease 
associations in homogeneous populations, in general, 
are unconfounded and cannot result from reverse cau-
sality. Nonetheless, final proof of causality awaits ran-
domized cardiovascular outcome trial data. In Table 4, we 
provide some priorities to address our existing gaps in 
knowledge.

CARDIOVASCULAR RISKS ASSOCIATED 
WITH Lp(a) AND ISSUES OF EFFECT 
MODIFICATION BY apo(a) SIZE AND 
ANCESTRY
Some LPA SNPs have been associated with apo(a) size 
and ASCVD risk.35 Although the evidence of an asso-
ciation between Lp(a) levels and ASCVD is robust, as 
underscored in a large population-based study of ances-
try groups with different Lp(a) level distributions that 
showed similar ASCVD risks by a given incremental 
increase in Lp(a) levels,69 the question whether apo(a) 
sizes might be associated with ASCVD has attracted 
much interest. Several early studies reported that the 
presence of a small apo(a) or the combination of a high 
Lp(a) level and a small apo(a) isoform was associated 
with ASCVD. The close association between high Lp(a) 
levels and small apo(a) sizes in samples from non-Black 
individuals, and the methodological difficulties in assess-
ing allele-specific apo(a) levels, as well, have made it 
challenging to dissect this issue. In many recent studies, 
assessment of either the sum of the 2 combined apo(a) 
allele sizes or the dominant apo(a) size in a given indi-
vidual have been used. Studies have collectively reported 
both the presence and the absence of any association of 
apo(a) size with ASCVD.11,80 Although a large Mendelian 
randomization study in a South Asian cohort identified an 

Table 4. Priorities to Address Current Gaps in Knowledge

Decode mechanisms by which genes outside LPA regulate Lp(a) levels (eg, 
APOE, APOH).

Fully characterize the role of single nucleotide polymorphisms not associ-
ated with KIV2.

Identify bona fide quantitative trait locuses in LPA and determine their 
mechanism of action.

Determine the role of ancestry on the magnitude of risk associated with 
Lp(a) including examination of the role of apolipoprotein(a) size, indepen-
dent of Lp(a) levels, in different ancestry groups.

Develop tools to identify which patients with elevated Lp(a) levels may not 
have increased atherosclerotic cardiovascular disease risk, and elucidate 
potential mechanisms, as well.

Lp(a) indicates lipoprotein(a).
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independent causal role in ASCVD for both Lp(a) levels 
and apo(a) isoform size,11 a definitive role for apo(a) size 
independent of Lp(a) levels in conveying ASCVD risk 
remains to be firmly established. For the latter, appropri-
ate genetic tools in a variety of cohorts must be used, 
as up to now studies have used analytical techniques 
that might not necessarily be appropriate to answer 
this question. If smaller isoform sizes are independently 
associated with increased risk, this implies that certain 
pathogenic mechanisms mediated by apo(a) (see later in 
this scientific statement) are influenced by isoform size. 
At present, measurements of the Lp(a) molar concentra-
tion are believed to be sufficient for clinical assessment 
of ASCVD risk because the addition of apo(a) size data 
does not further discriminate risk in most patients.

A recent analysis from the UK Biobank provided 
the largest study to date examining the risk of ASCVD 
associated with Lp(a) in a broad and diverse sample of 
460 000 individuals.69 Patel et al69 reported Lp(a) levels 
measured in nanomoles per liter using an immunotur-
bidometric assay with excellent concordance with the 
World Health Organization/International Federation of 
Clinical Chemistry reference material. Median Lp(a) lev-
els were 19.6 nmol/L overall, and were 19, 31, 75, and 
16 nmol/L among self-identified White, South Asian, 
Black, and Chinese participants. Lp(a) levels were also 
somewhat higher among women (22 nmol/L) than 
among men (17 nmol/L). The risk of ASCVD associ-
ated with Lp(a) levels was log-linear for levels above 
the median, with increasing risk for higher Lp(a) lev-
els. The standardized risk for ASCVD was 11% higher 
for each increment of 50 nmol/L (hazard ratio 1.11 
per 50 nmol/L [95% CI, 1.10–1.12]), independent of 
adjustment for traditional risk factors, and with simi-
lar effect estimates in all race and ethnicity groups. 
These findings support the current American College 
of Cardiology/American Heart Association cholesterol 
and primary prevention guidelines’ recommendation to 
use Lp(a) as a risk-enhancing factor that, if measured, 
would favor statin initiation among individuals at border-
line (5%–7.4%) or intermediate (7.5%–19.9%) 10-year 
predicted risk for ASCVD. Further guidance on how to 
use the risk information from Lp(a) levels is provided in 
Table 5.

CURRENT UNDERSTANDING OF THE 
PATHOPHYSIOLOGY OF Lp(a) AND ASCVD
Initial hypotheses based on Lp(a) composition sug-
gested that it could contribute to both atherosclerosis 
(through the lipoprotein moiety) and thrombosis (through 
the plasminogen-like apo(a) moiety; Figure, locations 
a–d). However, results from recent studies have yielded 
appreciation of the unique roles that confer specific pro-
inflammatory and procalcific effects to Lp(a). The apoB 

moiety of Lp(a) is expected to be atherogenic because 
of its similarity to LDL. Furthermore, although there 
are many fewer circulating plasma Lp(a) particles than 
LDL particles, even in the presence of very high Lp(a) 
levels, Lp(a) may be selectively retained in the arterial 
wall through binding of apo(a) to extracellular matrix 
proteins.16,83 Lp(a) also carries oxidized phospholipids 
(OxPLs) (Figure [b and c]), which are covalently bound 
to apo(a) and present in the lipid phase of Lp(a). OxPLs 
are endogenous danger-associated molecular patterns 
recognized by the innate immune system, triggering 
sterile inflammation and calcification84 with relevance to 
ASCVD and CAVD pathogenesis. As a consequence of 
these effects, the OxPL content of Lp(a) may modulate 
the atherogenicity of Lp(a). Increased18 fluorodeoxyglu-
cose-positron emission tomography imaging demon-
strates enhanced arterial wall inflammation in patients 
with elevated Lp(a) and supports the role of Lp(a) in 
promoting atherosclerosis.85

Apo(a) interacts with fibrin/fibrinogen and endothelial 
cells through its strong lysine-binding site and is found 
in human atheromas and calcified aortic valves.86–88 
Lp(a), through its OxPL component, upregulates endo-
thelial adhesion molecule and cytokine expression and 
facilitates monocyte transmigration in vitro.89 Moreover, 
Lp(a) is a strong chemoattractant for monocytes and 
upregulates monocyte cytokine expression.85 Although 
inflammation is a key feature of atherosclerosis and early 
CAVD, progression of the latter is primarily dependent on 
aortic valve mineralization and ossification. Patients with 
elevated Lp(a) or OxPL-apoB have enhanced18 F-NaF 
aortic valve uptake representative of calcifying activ-
ity, faster aortic valve calcification progression on serial 
computed tomography scans, and worse clinical out-
comes.73,90 Lp(a) components, including apo(a), OxPL, 
and autotaxin, colocalize in diseased human CAVD 

Table 5. Clinical Implementation of Lp(a) Levels in Risk 
Assessment for Primary Prevention of Atherosclerotic Car-
diovascular Disease

Current American College of Cardiology/American Heart Association 
guidelines15,81,82 recommend that risk assessment for primary prevention of 
atherosclerotic cardiovascular disease should begin with 10-y risk estima-
tion using the Pooled Cohort Equations (or similar well-validated equation 
for the patient population).

If the patient is in the borderline (5%–7.4%) or intermediate (7.5%–19.9%) 
10-y risk group, personalization and recalibration of the risk estimate 
should be attempted during a patient-clinician discussion that considers 
risk-enhancing factors, including family history of premature atheroscle-
rotic cardiovascular disease, chronic kidney disease, and other chronic 
conditions.

If measured, the Lp(a) level can be used as a risk-enhancing factor in this 
scenario. Based on the data from Patel et al,69 the clinician could adjust the 
10-y risk estimate based on the following formula to provide an approximate 
updated 10-y risk estimate: Predicted 10-y risk×[1.11(patient’s Lp(a) level in nmol/L/50)]

Patient example: For a patient with 10-y risk estimate of 10.0%, who has 
an Lp(a) level of 250 nmol/L, the updated predicted risk estimate would be 
16.9%: 10.0 %×1.11(250 /50)=10.0%×1.115=10.0%×1.69=16.9%

Lp(a) indicates lipoprotein(a).

D
ow

nloaded from
 http://ahajournals.org by on Septem

ber 17, 2022



CLINICAL STATEM
ENTS AND 

GUIDELINES
Reyes-Soffer et al Lipoprotein(a) and Atherosclerotic Cardiovascular Disease

Arterioscler Thromb Vasc Biol. 2022;42:e48–e60. DOI: 10.1161/ATV.0000000000000147 January 2022  e55

adjacent to valvular calcification.88 Upregulation of pro-
calcific and osteogenic genes in human valvular intersti-
tial cells by Lp(a) and apo(a) were partially dependent on 
OxPL.90 Moreover, Lp(a)-treated valvular interstitial cells 
resulted in hydroxyapatite mineral deposition.91 Autotaxin 
and its enzymatic product lysophosphatidic acid have 
been also implicated in the procalcific Lp(a) phenotype 
in vitro and in an animal model of CAVD, respectively.88

Whether Lp(a) contributes to atherothrombotic dis-
ease by directly inhibiting fibrinolysis, promoting throm-
bosis, or because of its role in atherogenesis remains the 
subject of investigation.92 Apo(a) inhibits plasmin-medi-
ated fibrinolysis in vitro. However, ex vivo clot lysis times 
were unchanged after Lp(a) lowering with apo(a) anti-
sense oligonucleotide treatment.93 The extensive homol-
ogy between apo(a) and plasminogen has prompted 
investigation of a possible link between elevated Lp(a) 
levels and venous thromboembolism. Although some 
early reports suggested a positive association of Lp(a) 
level and risk of venous thromboembolism,94,95 other data 
are mixed96,97 and genetic data do not support a mean-
ingful association,78,98 except at very high Lp(a) levels. 
Therefore, the antifibrinolytic properties of apo(a) may 
be masked when covalently associated with apoB in the 
Lp(a) particle. Even if Lp(a) is not inherently antifibrinol-
ytic, the impact of Lp(a) on formation of thrombosis, that 
is, through effects on platelets and the coagulation cas-
cade, has yet to be thoroughly investigated. The need 
remains to develop in vivo models of elevated Lp(a) lev-
els that can be translated to humans.

Lp(a)-LOWERING THERAPIES: EXISTING 
AND INVESTIGATIONAL
We currently lack definitive proof that specific pharmaco-
logical lowering of Lp(a) reduces adverse cardiovascular 
outcomes. However, data from several lines of genetic 
evidence support this notion.16,99,100 Accordingly, many cli-
nicians have the secondary goal of lowering Lp(a) in addi-
tion to lowering LDL-C and apoB in high-risk patients, in 
particular, when recurrent ASCVD events occur despite 
aggressive LDL-C lowering. Results from studies of dietary 
intervention show very modest effects on Lp(a) levels.101

The most effective clinically available intervention for 
Lp(a) lowering is lipoprotein apheresis. It is typically done 
every 2 weeks as Lp(a) levels return to their high levels 
over this interval.102 It is performed every 2 weeks in the 
United States, but often weekly in Germany. Lipoprotein 
apheresis is Food and Drug Administration approved for 
lowering LDL in patients with functional familial hyper-
cholesterolemia and coronary artery disease who have 
LDL-C >100 mg/dL [regardless of the level of Lp(a)], 
while also receiving maximally tolerated lipid-lowering 
treatments and lifestyle intervention. The Food and Drug 
Administration approval specifically for Lp(a) lowering 

requires Lp(a) >60 mg/dL. During the course of a single 
3- to 4-hour treatment, the Lp(a) concentration is acutely 
lowered by ≈50% to 85%, in association with compa-
rable reductions in oxidized phospholipids. In addition to 
lowering Lp(a), lipoprotein apheresis lowers LDL con-
centrations by 60% to 85%.103,104 Limited clinical trial 
data suggest that Lp(a) lowering with lipoprotein apher-
esis may reduce the risk of ASCVD events,105 but defini-
tive studies are needed.

Standard LDL-C and apoB lowering treatments have 
minimal Lp(a)-lowering efficacy, with some statins mini-
mally increasing Lp(a) levels.106,107 Of note, data from 
trials of monoclonal antibodies directed against PCSK9 
demonstrated dramatic LDL-C lowering by an average of 
50% to 60%, but also modest Lp(a) lowering of 25% to 
30%. The results of a recent analysis suggested that ali-
rocumab-mediated Lp(a) lowering independently contrib-
uted to major adverse cardiovascular event reduction.108

Moreover, in patients with recent acute coronary 
syndrome on optimized statin therapy and LDL-C  
<70 mg/dL, alirocumab only lowered major adverse car-
diovascular events in patients with mildly elevated (>13.7 
mg/dL) Lp(a); there was no such interaction between 
Lp(a) levels and alirocumab benefit when LDL-C was 
≥70 mg/dL.109 Niacin may dose-dependently lower 
Lp(a) up to 25% to 40%, but the cardiovascular ben-
efit of this intervention is unknown, and the adverse side 
effect profile of niacin in the setting of statins may be a 
concern.110,111

Several experimental therapies targeting the apo(a) 
moiety of Lp(a) are in development. An antisense oligonu-
cleotide for apo(a), pelacarsen (formerly known as IONIS-
APO(a)-LRx, AKCEA-APO(a)-LRx, and TQJ230), lowers 
Lp(a) 80% at a dose of 20 mg subcutaneously weekly, with 
seemingly good tolerance.112 The administration of potent 
and specific Lp(a)-lowering antisense oligonucleotides to 
patients reduces the inflammatory gene expression profile 
in circulating monocytes and their ex vivo transendothelial 
migration capacity.113 A 7682-person placebo-controlled 
randomized clinical outcomes trial to assess the effects of 
pelacarsen on ASCVD outcomes is in progress. Two inves-
tigational small interfering ribonucleic acid molecules tar-
geting apo(a) RNA are in phase II (ARO-LPA [AMG890]) 
and phase I (SLN-360) testing as of 2020.

SUMMARY
Epidemiological data consistently indicate a direct and 
dose-dependent risk association of Lp(a) with ASCVD 
and calcific aortic valvular disease. On the basis of mecha-
nistic, observational, and genetic data, a strong case can 
be made that elevated Lp(a) is causal for ASCVD. Lp(a) 
levels are largely determined by genetic factors, with mini-
mal influence from dietary or other behavioral factors. Fur-
ther work is needed to understand the mechanistic links 
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between apo(a) isoforms and risk for ASCVD; pathways 
for Lp(a) synthesis, regulation, and metabolism; and Lp(a)-
associated risk in diverse genetic and environmental con-
texts. Although Lp(a) is a common, genetically inherited, 
and clinically important ASCVD risk factor that can be 
measured with a simple blood test, Lp(a) is not measured 
in most patients before or even after they have an ASCVD 
event. International standards for measurement of Lp(a) 
need to be established and codified to allow for consis-
tent measurement, using assays expressing results in 
nanomoles per liter, and a common protocol is needed for 
monitoring of assay performance to ensure comparable 
results between laboratories. This will be especially impor-
tant because targeted Lp(a)-lowering trials are conducted 
with different agents and repeated measurement of Lp(a) 
as a biomarker of therapeutic efficacy becomes possible.

At present, the evidence in favor of screening for Lp(a) 
is the strongest for those with a family or personal history 
of ASCVD, with consideration of cascade screening in 
appropriate individuals. Various organizations have pro-
posed to obtain a level once in every adult.64,65,114 Once 
the issues with Lp(a) measurement are resolved, which 
should be in the near future, a reassessment of broader 
population-based screening should be considered. The 
current best approach to lower overall ASCVD risk in 
patients with high Lp(a) is to target LDL-C/apoB with 
statin and adjunctive medications as initial therapy to 
lower risk for ASCVD. Additional information is needed 
on whether newer therapies for apoB lowering reduce 
ASCVD risk in part through effects on Lp(a).108,115,116 
Novel therapeutics that directly target apo(a) produc-
tion are in clinical development. Further trials will indicate 
whether these therapies not only potently lower Lp(a), 
but also reduce ASCVD events. Positive results of such 

trials would firmly establish Lp(a) as modifiable causal 
risk factor and add to our therapeutic armamentarium to 
combat ASCVD and potentially CAVD.
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