MEDPACE Bioanalytical Laboratories

Overview

This study demonstrates a systematic approach for identification and confirmation of extensive sequence information over the whole length of a protein in a single series of experiments using TripleTOFTM 5600 System with MRMPilotTM and ProteinPilotTM Software.

In this method, herceptin was denatured with guanidine hydrochloride in Tris-HCL buffer, and then treated with dithiothreitol (DTT) to break disulfide linkages between cysteine residues for complete reduction. To prevent the disulfide bonds from re-forming, iodoacetamide (IAA) was used to modify the reactive cysteine-SH groups, forming scarboxylmethylated cysteines. After alkylation, the proteases such as Lys-C or trypsin were used for digesting the protein into a population of peptides that were able to be identified by the mass spectrometer. MRMPilotTM and ProteinPilotTM Software can help to select optimized MRM transitions of peptides based on the protease digestion of the protein.

Following the denature, reduction, alkylation and digestion, the protein sequencing and sequence confirmation were performed by TripleTOFTM 5600 System.

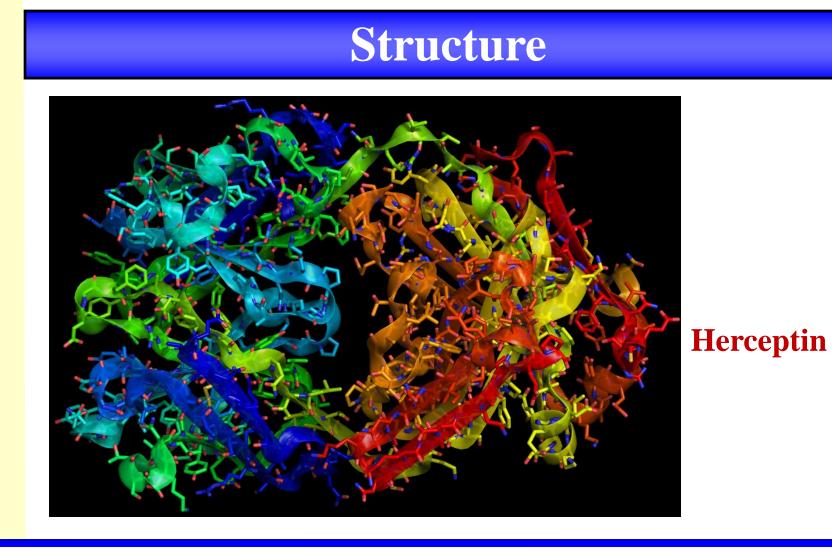
This method has been successfully applied to clinical pharmacokinetic studies.

Introduction

The development of bioanalytical techniques for rapid and accurate identification of proteins is important in biopharmaceutical industry. Peptide mapping by LC-MS/MS is one of the most powerful qualitative assays to confirm the primary sequence of proteins or antibodies and to detect subtle changes in the primary structure of biologics. TripleTOFTM 5600 System has become a valuable tool for characterization of large biomolecules due to its reliability, speed, resolution and sensitivity. MRMPilotTM and ProteinPilotTM Software can help to predict potential MRM of peptides based on the protease digestion of the protein.

In this study, herceptin was used for analysis. Herceptin, also named Trastuzumab, a high-affinity humanized monoclonal antibody that recognizes HER-2, is a novel targeted-therapy for breast cancer overexpressing HER-2 receptor.

Sample Preparation:


Herceptin was denatured with guanidine hydrochloride in Tris-HCL buffer, and was reduced and alkylated by DTT and IAA. After alkylation, the proteases such as Lys-C or trypsin were used for digesting the protein into a population of peptides that were able to be identified by the mass spectrometer. Following the denature, reduction, alkylation and digestion, The digested product was transferred to LC vials for the analysis by TripleTOFTM 5600 System.

Liquid Chromatography:

Shimadzu LC-30A Pump: Shimadzu SIL-30AC Autosampler: System Controller: Shimadzu CBM-20A Analytical Column: HyperClone BDS C18 column, 2.0 x 150 mm, 5 µm, 130A The analyte was eluted using a Gradient: gradient of mobile phase A (0.1% TFA in water) and mobile phase B (ACN:H2O:TFA (90:9.92:0.08) from 10% to 80% mobile phase B in 20

Injection Volume: 10 µL

MS System: Condition:

Rapid Protein Sequencing Using TripleTOFTM 5600 System with MRMPilotTM and ProteinPilotTM Software

Medpace Bioanalytical Laboratories, 5365 Medpace Way, Cincinnati, OH 45227

Methods

Mass Spectrometry:

AB/Sciex TripleTOFTM 5600 LC/(+)ESI-MS/MS, (High Resolution MRM)

Sequence	Precursor Mass (Da)	Fragment Mass (Da)	RT (min)	Fragment Type	Mean Height
RTVAAPSVFIFPPSDEQLK	701.38	913.46	15.9	3+ / y8	112980
SFNRGEC[CAM]	435.18	635.26	3.4	2+ / y5	97420
DSTYSLSSTLTLSK	751.88	1036.59	14.3	2+ / y10	50380
SGTASVVC[CAM]LLNNFYPREAK	709.36	1138.56	15.9	3+ / y9	36100
ADYEK	313.14	439.22	1.7	2+ / y3	28260
VQWK	280.66	333.19	6.6	2+ / y2	15840
VDNALQSGNSQESVTEQDSK	712.66	893.42	6.7	3+ / y8	11320
VYAC[CAM]EVTHQGLSSPVTK	938.47	1154.62	10.3	2+ / y11	6140
DIQMTQSPSSLSASVGDRVTITC[CAM]RASQDVNTAVAWYQQK	860.62	1094.56	15.8	5+ / y9	100

Table 1: Proposed and Found peptide by MRMPilot on AB/Sciex TripleTOF[™] 5600 from Lys-C Digested Herceptin Light Chain

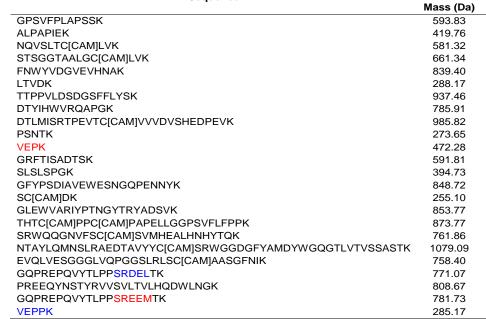


Table 2: Proposed and Found peptide by MRMPilot on AB/Sciex TripleTOF[™] 5600 from Lys-C Digested Herceptin Heavy Chain

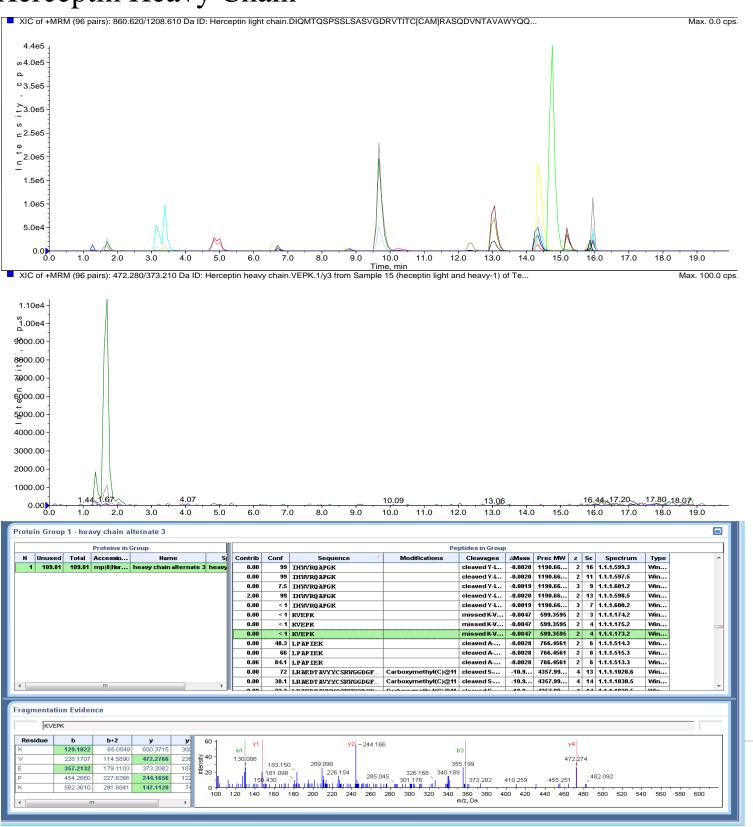


Figure 1. Representative Chromatogram of Lys-C Digested Herceptin (Verify Sequence "VEPK" for single proline)

Yan Ke, Nicole Roenker, Elise Snide and Yong-Xi Li

Results and Discussion

Fragment	RT (min)	Fragment	Mean
Mass (Da)		Туре	Height
699.40	14.7	2+ / y7	435463
486.29	9.7	2+ / y4	228840
820.46	14.4	2+ / y7	186780
760.44	13.0	2+ / y7	95900
968.48	15.2	2+ / y9	48720
462.26	4.9	2+ / y4	28560
948.48	15.9	2+ / y8	22840
1078.59	12.3	2+ / y9	17320
1154.53	15.8	3+ / y10	14420
449.24	1.3	2+ / y4	13620
244.17	1.7	1+ / y2	11320
721.37	8.8	2+ / y7	6600
588.34	8.7	2+ / y6	5100
949.44	15.8	3+ / y8	4720
262.14	1.3	2+ / y2	4300
1159.57	15.9	3+ / y10	2920
1031.59	16.0	3+ / y9	680
927.44	15.3	4+ / y7	560
1150.63	16.0	5+ / y12	120
1167.58	15.8	4+ / y11	260
945.50	No Peak	3+ / y8	No Peak
997.49	No Peak	4+ / y8	No Peak
1074.52	11.3	3+ / y9	31820
341.22	No Peak	2+ / y3	No Peak

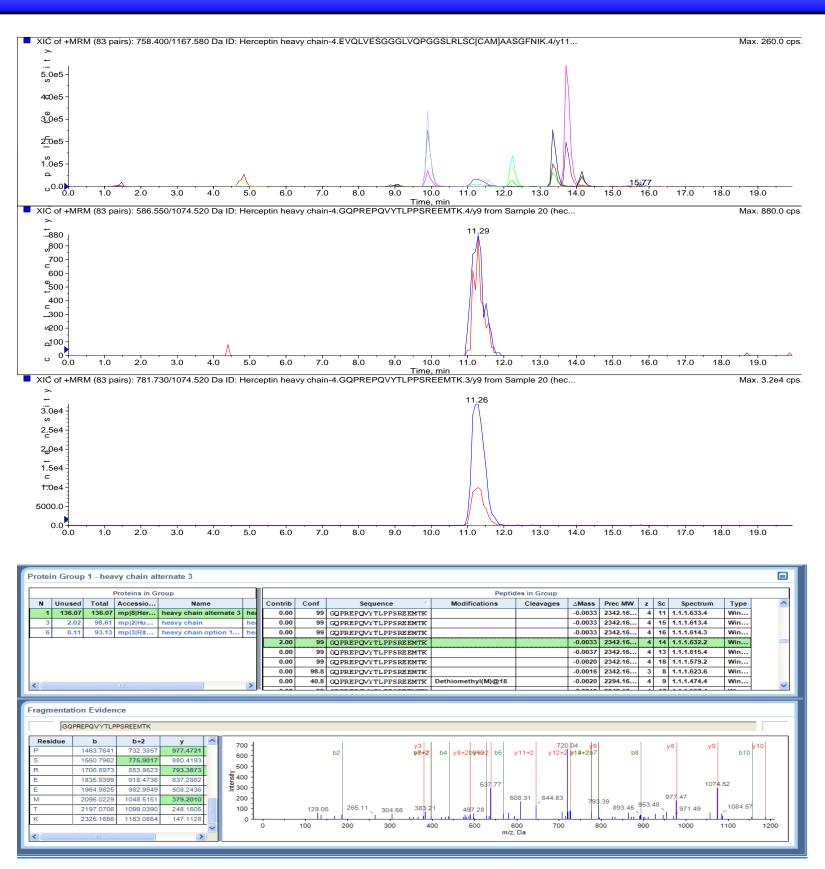


Figure 2. Representative Chromatogram of Lys-C Digested Herceptin (Verify Sequence "SREEMTK", no evidence for DELTK)

Herceptin light chain

RFSGSRSGTD SDEQLKSGTA	FTLTISSLQP SVVCLLNNFY	EDFATYYCQQ PREAKVQWKV	TAVAWYQQK P HYTTPPTFGQ DNALQSGNSQ	GTKVEIK rtv	AAPSVFIFPP				
LSKADYEK HK	VYACEVTHQG	LSSPVTKSFN	RGEC						
Herceptin heavy chain-4									
EVQLVESGGG	LVQPGGSLRL	SCAASGFNIK	DTYIHWVRQA	PGKGLEWVAR	IYPTNGYTRY				
ADSVKGRFTI	SADTSKNTAY	LQMNSLRAED	TAVYYCSRWG	GDGFYAMDYW	GQGTLVTVSS				
ASTKGPSVFP	LAPSSKSTSG	GTAALGCLVK	DYFPEPVTVS	WNSGALTSGV	HTFPAVLQSS				
GLYSLSSVVT	VPSSSLGTQT	YICNVNHK PS	NTK VDKK VEP	KSCDKTHTCP	PCPAPELLGG				
PSVFLFPPK P	K DTLMISRTP	EVTCVVVDVS	HEDPEVKFNW	YVDGVEVHNA	K TK <mark>PREEQYN</mark>				
STYRVVSVLT	VLHQDWLNGK	EYKCKVSNKA	LPAPIEK TIS	KAK gqprepq	VYTLPPSREE				
MTKNQVSLTC	LVK gfypsdi	AVEWESNGQP	ENNYKTTPPV	LDSDGSFFLY	sk ltvdk srw				

Figure 3, Results from determination by MRMPilot on AB/Sciex TripleTOF[™] 5600 system for Herceptin. Note: Red sequence was observed in digest. Yellow sequence was not observed. Black sequence was not estimated by MRMPilot

• Confirmation of the protein sequence was accomplished by TripleTOF[™] 5600 System analysis combined with MRMPilotTM and ProteinPilotTM data processing and sequence similarity database searching tools.

•After complete denature, reduction and alkylation, the protein was digested by the enzyme into a collection of peptides which were then separated by LC and analyzed by TripleTOFTM 5600 System based on the MRM transitions optimized automatically by MRMPilotTM and ProteinPilotTM Software. Extensive sequence coverage was achieved.

• The protein herceptin has a light chain and a heavy chain, where the heavy chain has some sequence variants with only one or two amino acid difference. The peptide mapping results not only identified and confirmed the extensive sequence information over the whole length of the protein herceptin including both light chain and heavy chain, but also demonstrated the correct version.

Conclusions

This method demonstrates the advantage of fast chromatography combined with high resolution, high mass accuracy mass spectrometry to confirm the sequence identity of complex proteins. The method is a simple, rapid, accurate and useful LC-HRMS-based approach for protein sequence mapping analysis of protein therapeutics.