
Simultaneous Measurement of Four Oxysterols in Human Serum by UPLC-APCI-MS/MS

Aiping Zhu, Wanqing Lu, Nelson Santiago, Tian-Sheng Lu and Yong-Xi Li Medpace Bioanalytical Laboratories, 5365 Medpace Way, Cincinnati, OH 45227

PURPOSE

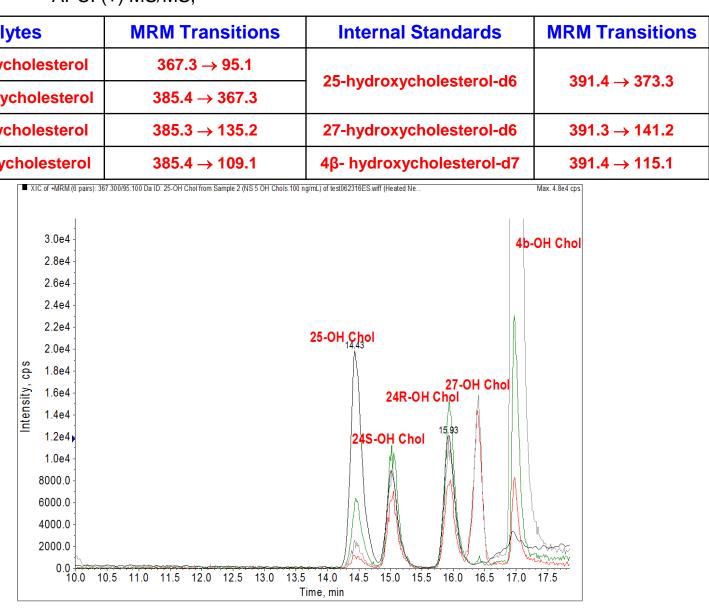
Oxysterols are oxidized derivatives of cholesterol, which may be important in many biological processes, including cholesterol homeostasis, atherosclerosis, and sphingolipid metabolism, etc. 4β-Hydroxycholesterol is an endogenous biomarker for cytochrome P450 3A4/5 activity. 24S-Hydroxycholesterol and 27-hydroxycholesterol could serve as markers for Alzheimer disease. In addition, 27-hydroxycholesterol and 25hydroxycholesterol are known to downregulate the cholesterol biosynthetic pathway. The separation and quantitation of oxysterols is very challenging due to their structural similarities. Most reported LC-MS methods required either tedious derivatization procedures or long analysis times. The purpose of this study is to develop a rapid and reproducible LC-MS/MS method for simultaneous quantitation of 4β -, 24S-, 25-, and 27hydroxycholesterols in human serum without derivatization to support clinical studies.

METHOD

Sample Preparation:

Due to endogenous presence of oxysterols in human serum, a surrogate matrix (0.1% Tween 20 in water) was used for the preparation of calibration standards and LLOQ samples, however, LQC, MQC and HQC samples were prepared in authentic human serum. 4 β -, 24S-, 25-, and 27hydroxycholesterols and their internal standards were extracted from an aliquot of 50 µL serum by liquid-liquid extraction with hexane. The organic layer was evaporated and reconstituted in acetonitrile for LC-MS/MS analysis.

Liquid Chromatography:


UPLC: Waters Acquity I Analytical Column: C18 150 x 2.1 mm, 2µm column Column Temperature: 45°C Mobile phase A: 0.1% formic acid in water Mobile phase B: Methanol: Acetonitrile 50:50 v:v Flow Rate: 0.3 mL/min Injection Volume: 10 µL

Mass Spectrometry:

MS System:	AB/Sciex Triple Quad 5500
Condition:	APCI (+) MS/MS,

Analytes	MRM Transitions	Internal Standard
25-hydroxycholesterol	367.3 → 95.1	- 25-hydroxycholestero
24S-hydroxycholesterol	385.4 → 367.3	
27-hydroxycholesterol	385.3 → 135.2	27-hydroxycholestero
4β- hydroxycholesterol	385.4 → 109.1	4β- hydroxycholestero

XIC of +MRM (6 pairs): 367 300/95 100 Da ID: 25-OH Chol from Sample 2 (NS 5 OH Chols 100 pg/mL) of test062316ES wiff (Heated N

Typical chromatograms of 4β -, 24S-, 24R-, 25-, and 27-hydroxycholesterols Figure 1.

COLORADO CONVENTION CENTER, DENVER

RESULTS

The four structurally similar oxysterols were well resolved within 20 minutes, which provided a reliable way for the quantification of 4β -, 24S-, 25-, and 27-hydroxycholesterols in human serum by LC-MS/MS. This assay was validated in a nominal range of 10.0 to 1000 ng/mL for 4β-, 24S-, and 27hydroxycholesterols, 5.00 to 500 ng/mL for hydroxycholesterol for 25-hydroxycholesterol with correlation coefficients (r2) ≥ 0.9981 . The intra-day precision CV% $\leq 7.3\%$ and accuracy (bias %) ranged from -2.5% to 10.0%. Inter-day precision CV% \leq 9.0% and accuracy (bias %) ranged from -3.0% to 8.4%. The four oxysterols were found to be stable in human plasma at least 6 hours at ambient, 3 freeze/thaw cycles at ~-70°C, and at least 45 days in a \sim -70^oC freezer. The method has been successfully applied to the analysis of the clinical samples.

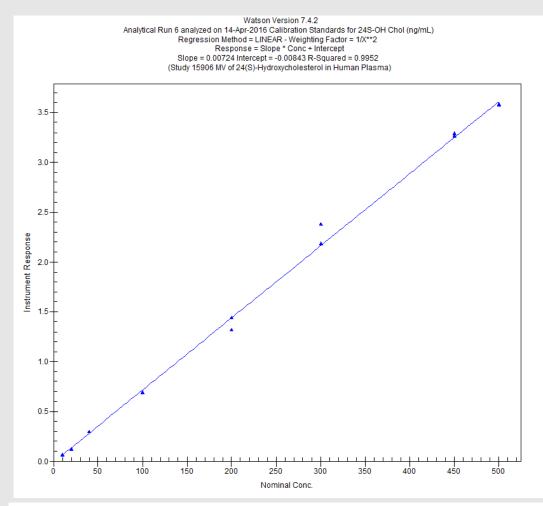


Figure 2. Typical Calibration Curve of 24S-hydroxycholesterol

CONCLUSION

A rapid UPLC-APCI MS/MS method has been developed for simultaneous quantitation of 4β-, 24S-, 25-, and 27hydroxycholesterol in human serum. The assay provided a sensitive, reproducible and selective for the accurate measurement of 4β -, 24S-, 25-, and 27-hydroxycholesterol in human serum.