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Overview
Phosphocholine-containing oxidized phospholipids (OxPLs) are key mediators of chronic inflammation1, 
particularly within atherosclerotic lesions. In plasma, OxPLs are primarily detected on apolipoprotein B-100 
(apoB-100)-containing lipoproteins, with lipoprotein(a) [Lp(a)] serving as the predominant carrier. Validated 
methods now allow for quantification of phosphocholine-containing OxPLs on all apoB-containing 
lipoprotein particles (OxPL-apoB) or on Lp(a) particles [OxPL-apo(a)]. OxPLs are measured using the natural 
IgM murine monoclonal antibody E06 that specifically binds oxidized, but not native, phospholipids via 
their phosphocholine headgroup2,3. Results are normalized to apoB or Lp(a) to ensure accurate across-
sample comparison.

OxPL-apoB and OxPL-apo(a) serve as biomarkers of oxidative stress and vascular inflammation, central  
to the pathogenesis of atherosclerotic cardiovascular disease (ASCVD)1. These biomarkers are valuable 
tools for cardiovascular risk stratification and as pharmacodynamic endpoints in Lp(a)-lowering and anti-
inflammatory drug development.

Introduction
Despite advances in lipid-lowering therapies, a considerable residual ASCVD risk persists, prompting a 
focus on non-traditional factors such as oxidation and inflammation. Oxidation plays a critical role in 
atherosclerosis by modifying lipoproteins and promoting inflammation.

All apoB-100-containing lipoprotein particles are causally linked to the risk of CVD due to their capacity 
to enter the arterial subintimal space, become trapped and deliver cholesterol, cholesteryl ester and 
phospholipids to the vessel wall. These particles are then susceptible to oxidative modifications, resulting 
in the formation of oxidation-specific epitopes recognized as damage-associated molecular patterns by 
the immune system4, which trigger chronic inflammation. OxPLs, a subset of these oxidation-specific 
epitopes, are bioactive lipids generated through the oxidative modification of polyunsaturated fatty acids 
on phospholipids5.

OxPLs are abundant in atherosclerotic lesions where they promote endothelial dysfunction, immune 
system activation, and foam cell formation. Their presence is mechanistically and clinically linked to the 
initiation, progression, and destabilization of atherosclerotic plaques6.

OxPLs are also present on circulating apoB-100-containing lipoprotein particles, especially Lp(a). 
Measurement of OxPL-apoB reflects the total burden of OxPLs carried on all apoB-containing lipoproteins, 
including, VLDL, IDL, LDL, and Lp(a). Measurement of OxPLs on apo(a), the distinctive protein component 
of Lp(a), specifically quantify OxPLs carried by Lp(a)7 [OxPL-apo(a)], an independent risk factor for ASCVD.

These markers offer mechanistic insights and add granularity to inflammation and oxidation assessment 
beyond traditional measures like LDL-C, apoB, and hsCRP.

Mechanistic Role of OxPLs in Atherosclerosis
OxPLs are primarily generated when native phospholipids on apoB-containing lipoproteins undergo 
oxidative modifications. These oxidized products bind to scavenger receptors such as CD36 and Toll-like 
receptors, promoting macrophage uptake and foam cell formation, which are central processes to plaque 
development. OxPLs also upregulate inflammatory cytokines such as IL-1β, IL-6, and TNF, perpetuating a 
cycle of inflammation and oxidative stress4,5.
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Human Atherosclerotic Lesions and OxPLs
Histological studies in human coronary and carotid arteries reveal that OxPLs and apo(a) are much more 
prevalent than apoB-100 in advanced plaques, particularly in fibrous caps and necrotic cores6. This 
distribution pattern suggests that while apoB-100 may initiate lesion formation, OxPLs and Lp(a) are more 
involved in plaque progression and instability. OxPLs have also been found in debris collected during 
vascular interventions, confirming their clinical relevance8.

Lp(a): The Main Lipoprotein Carrier of OxPLs
Among all apoB-containing lipoproteins, Lp(a) carries the largest OxPL burden9,10. This is due to both the 
covalent attachment of OxPLs to apo(a) and their presence in the lipid phase of the LDL-like component 
of Lp(a). Experimental evidence shows that OxPLs preferentially transfer to Lp(a) from other lipoproteins, 
and OxPL-apoB levels correlate closely with plasma Lp(a) concentration9. However, OxPLs contribute 
additional predictive value beyond Lp(a) alone by reflecting inflammatory and oxidative stress11.

Pathophysiological Role of OxPL-Lp(a) Interaction
The binding of OxPLs to the KIV10 domain of apo(a), through a lysine binding pocket (LBS), is essential for 
their accumulation on Lp(a)10. Transgenic mice expressing Lp(a) with mutated LBS show markedly reduced 
OxPL accumulation10,13. The source of OxPLs is likely systemic, transferred from inflamed or apoptotic 
cells such as hepatocytes in steatohepatitis or immune cells in autoimmune conditions. Interestingly, while 
plasminogen also carries OxPLs, its clinical significance in ASCVD is less defined than that of Lp(a)14.

Inflammation and Monocyte Priming
High Lp(a) levels are associated with increased arterial inflammation and monocyte activation15-20. In 
vitro studies, show that these inflammatory responses are mitigated by blocking OxPLs using monoclonal 
antibody E06. Lp(a)-stimulated endothelial cells exhibit upregulated glycolysis and enhanced monocyte 
adhesion, underscoring its role in vascular inflammation.

Evolutionary Insights
The human LPA gene, encoding apo(a), is a derivative of the plasminogen gene (PLG) and is unique to 
primates, African monkeys and hedgehogs12. Only human apo(a) retains a LBS in kringle IV type 10  
(KIV10) capable of binding OxPLs, a property absent in other species10. The evolutionary advantage of 
Lp(a) remains uncertain, though hypotheses include potential roles in wound healing, parasitic defense, or 
hemostasis during childbirth.

Methodologies for Measuring OxPL-apoB and OxPL-apo(a)
Both assays use a proprietary ELISA platform based on the use of monoclonal antibody E06 to detect 
OxPLs. OxPL-apoB is measured on all apoB-containing particles captured on  microtiter well plates by an 
apoB-specific monoclonal antibody (MB47), while OxPL-apo(a) is measured on Lp(a) particles captured by 
an apo(a)-specific monoclonal antibody (LPA4).

This specificity to OxPL has enabled the development of the OxPL-apoB and the OxPL-apo(a) assays 
Results are normalized to apoB or to Lp(a) mass captured on the microtiter well plates to ensure accurate 
cross-sample comparisons.
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Summary of Assay Methodology: OxPL-apoB
•	 Capture: MB47 antibody (5 µg/mL) coats the plate, binding apoB-100 from plasma (1:50 dilution).
•	 Detection: Biotinylated E06 (1 µg/mL) binds to OxPLs; streptavidin-alkaline phosphatase links 

detection to chemiluminescent readout.
•	 Output: Relative light units (RLU) proportional to OxPL levels, converted to nmol/L using a PC 

equivalent standard curve.
•	 Note: MB47 captures apoB equally across LDL, IDL, VLDL, and Lp(a), reflecting total apoB- 

containing particles.

Figure 1. To quantify OxPL-apoB, the MB47 antibody is plated overnight at 5 μg/ml to bind apoB-100 on the microtiter 
plate; the excess material is then washed off and the plasma sample is added at a 1:50 dilution to allow apoB-100 to 
bind to the immobilized MB47. Because MB47 recognizes all apoB-100-containing particles with similar specificity, 
the apoB-100 captured on the plate will reflect the proportion of apoB-100-containing particles that are present 
in the plasma sample. For example, if Lp(a) levels are elevated, a higher proportion of apoB-100 from Lp(a) will be 
captured on the microtiter well plate. Biotin-modified E06 (1 μg/ml) is then added to the plate to bind to the OxPLs 
present on apoB-100-containing lipoproteins, and streptavidin modified with alkaline phosphatase is added to bind 
to the biotin–E06 in a 1:1 ratio. A chemiluminescent substrate for alkaline phosphatase (Lumi-Phos) is then added 
to generate light, which is directly proportional to the amount of phosphocholine-containing OxPLs present in the 
microtiter well plate and reported as RLU emitted per 100 ms. RLUs are then converted to nanomoles per liter using 
a standard curve of phosphocholine (PC) equivalents1.
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Figure 2. To quantify OxPL-apo(a), the LPA4 antibody is plated overnight at 5 μg/ml to bind apo(a) on the microtiter 
plate; the excess material is then washed off and the plasma sample is added at a 1:50 dilution to allow Lp(a)/apo(a) 
to bind to the immobilized LPA4. Biotin-modified E06 (1 μg/ml) is then added to the plate to bind to the OxPLs 
present on Lp(a)/apo(a)-containing lipoproteins, and streptavidin modified with alkaline phosphatase is added to bind 
to the biotin–E06 in a 1:1 ratio. A chemiluminescent substrate for alkaline phosphatase (Lumi-Phos) is then added 
to generate light, which is directly proportional to the amount of PC-containing OxPLs present in the microtiter well 
plate and reported as RLU emitted per 100 ms. RLUs are then converted to nanomoles per liter using a standard 
curve of PC equivalents1.

Differences in OxPL-apoB and OxPL-apo(a) Levels
The OxPL-apoB assay measures oxidized phospholipids on all apoB-containing lipoproteins, including LDL, 
VLDL, IDL, and Lp(a). It is performed using EDTA plasma or serum. Levels above 5 nmol/L (>75th percentile 
are associated with increased systemic oxidative stress and inflammation related to atherogenesis.

This assay employs the MB47 antibody to capture apoB-100–containing particles, so the assay reflects 
the distribution of these particles in plasma. LDL particles, which make up most of apoB-100 lipoproteins, 
predominate on the assay plate, but Lp(a) carries the highest OxPL content. Thus, OxPL-apoB reflects 
the total mass of OxPL per fixed amount of captured apoB-100, with LDL being most abundant and Lp(a) 
disproportionately enriched in OxPL.

In contrast, the OxPL-apo(a) assay is specific to OxPL on Lp(a) particles. Like OxPL-apoB, it uses EDTA 
plasma or serum and typically yields higher values, as only Lp(a) particles are bound to the plate, excluding 
other apoB-containing lipoproteins. Because Lp(a) carries most of the OxPL found on lipoproteins in 
plasma, the absolute OxPL levels measured in this assay are higher than those in the OxPL-apoB assay if 
measured in the same sample.

Summary of Assay Methodology: OxPL-apo(a)
•	 Capture: LPA4 antibody (5 µg/mL) selectively binds Lp(a)/apo(a).
•	 Detection and readout: Follows the same procedure as OxPL-apoB using biotin-E06 and 

chemiluminescence.
•	 Specificity: Reflects the OxPL load specifically on Lp(a).
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Table 1. Summary of key characteristics of OxPL-apoB and OxPL-apo(a) assays

Clinical Applications of OxPL-apoB and OxPL-apo(a) 
Measurement
The OxPL-apoB assay provides a powerful cardiovascular risk marker, independent of LDL-C or apoB 
concentrations1. It detects the number of OxPLs per unit of apoB-100 using MB47 (for capture) and 
biotin-E06 (for detection). Notably, OxPL-apoB levels are a more specific indicator than commonly used 
OxLDL assays, which lack specificity and are confounded by native LDL cross-reactivity.

Predictive Value in Cardiovascular Events
Over 50 clinical studies using OxPL-apoB assay have demonstrated its utility in predicting:

•	 Extent of anatomical atherosclerosis
•	 First and recurrent myocardial infarction (MI)
•	 Ischemic stroke
•	 Peripheral artery disease (PAD)

In many cohorts, OxPL–apoB was a stronger or independent predictor compared to Lp(a), especially 
in the context of systemic inflammation (e.g., acute coronary syndromes)1,11. Importantly, elevated 
OxPL-apoB improves risk reclassification, particularly in intermediate-risk individuals – a key demographic 
for preventive interventions21.

OxPL-apoB is a composite marker reflecting oxidative modification of all apoB-containing lipoproteins 
(primarily LDL and Lp(a)), while OxPL-apo(a) is a more specific measure of the OxPL on Lp(a) alone. The 
OxPL-apo(a) assay is particularly useful for monitoring the biochemical effect of Lp(a)-lowering therapies 
in individuals with elevated Lp(a), especially since Lp(a) carries the majority of OxPLs in plasma. Notably, in 
clinical trials, reductions in Lp(a) levels via pelacarsen were paralleled by marked reductions in OxPL apo(a), 
further supporting the potential utility of this biomarker in monitoring the therapeutic response.

These assays provide complementary information: OxPL-apoB reflects the overall oxidative burden 
across all atherogenic apoB-containing lipoproteins, whereas OxPL-apo(a) offers measures Lp(a)-specific 
proatherogenic and prothrombotic risk (Table 1).
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Figure 3. Association of OxPL-apoB with anatomical pan-arterial disease and cardiovascular events. a- Schematic  
of the oxidized phospholipid (OxPL)-apolipoprotein B (apoB) assay and the association between elevated  
OxPL-apoB levels and endothelial dysfunction, carotid, coronary and peripheral artery disease, and aortic stenosis. 
The evidence for these studies is summarized in the main text. b- Cumulative hazard curves for the incidence of 
cardiovascular disease (CVD) or stroke by OxPL-apoB tertile groups over 15 years of prospective follow-up. c- 
Association between OxPL–apoB and the risk of major adverse cardiovascular events (MACE) or stroke in a meta-
analysis of seven published studies. The values represent the relative risk (95% CI) of MACE or stroke for the 
top versus bottom fifths of plasma OxPL-apoB level after adjusting for established risk factors for CVD. Adapted  
with permission from publisher1.
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Therapies that Lower OxPL-apoB and OxPL-apo(a):
1.		 Antisense oligonucleotides (ASOs) and siRNA: These include agents such as pelacarsen22 and 

olpasiran23 which target the LPA mRNA, effectively reducing the synthesis of apolipoprotein(a), 
and thus Lp(a) itself. Since Lp(a) is the main carrier of OxPLs among apoB-containing lipoproteins, 
lowering Lp(a) with ASOs and siRNAs substantially reduces both OxPL-apoB (88-92%) and  
pelacarsen lowered OxPL-apo(a) levels by 70%22.

2.		 Muvalaplin: An oral small molecule inhibitor that disrupts apo(a)-apoB interaction, was shown to 
significantly lower plasma Lp(a) concentrations in a dose-dependent manner. At the highest doses 
of muvalaplin (60 and 240 mg/day), OxPL-apo(a) levels were reduced by 70.9% and 73.0%, and  
OxPL-apoB levels by 67.2% and 58.8%, respectively24.

3.		 Lipoprotein apheresis: This extracorporeal therapy physically removes Lp(a) and other 
apoB-containing lipoproteins from the circulation, leading to an acute and often sustained  
reduction in OxPL-apoB levels25. It is particularly useful in patients with extremely elevated Lp(a) 
and high cardiovascular risk.

4.		 Niacin (vitamin B3): While not widely used today due to side effects and modest outcome benefit, 
niacin has been shown to reduce plasma Lp(a) levels and, consequently, OxPL-apoB concentrations26.

5.		 Bariatric surgery: In individuals with obesity, bariatric surgery not only improves traditional lipid 
profiles and metabolic markers but also reduces systemic inflammation and OxPL-apoB levels, likely 
by altering lipoprotein metabolism and oxidative stress burden27.

6.		 Experimental antibody therapy (E06-based): Although not yet clinically available, preclinical studies 
using the IgM monoclonal antibody E06 or its single-chain variable fragment, scFv, demonstrate 
potent binding and neutralization of OxPLs. Expression of E06 in animal models has shown 
significant reductions in OxPL levels, inflammatory cytokines, inflammatory gene expression1,14,15. 
E06 has also been shown in mouse models to ameliorate a variety of OxPL-driven pathologies, 
including atherosclerosis and steatohepatitis, by neutralizing OxPLs28,29.

These therapies provide complementary strategies — either directly reducing Lp(a), the carrier of most 
OxPL, or removing/inactivating OxPLs themselves — to mitigate the atherogenic and inflammatory burden 
attributed to oxidized phospholipids.

Statins are not effective for reducing OxPL-apoB or OxPL-apo(a) levels. In fact, statins can increase Lp(a) 
levels and associated OxPL content by approximately 10–20% in some individuals30. Given that Lp(a) is 
the primary carrier of OxPL among apoB-containing lipoproteins, this increase may lead to higher levels of 
OxPL-apo(a) and contribute to a paradoxical rise in OxPL-apoB as well. This finding emphasizes that while 
statins are effective for lowering LDL-C, they may have limited or even adverse effects on Lp(a)- and OxPL 
associated cardiovascular risk markers31. Therefore, in patients with elevated Lp(a) or OxPL, additional 
therapies beyond statins may be required to address this residual risk.

Table 2. Therapies that modify OxPL-apoB and OxPL-apo(a) levels.
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Research Applications of OxPL-apoB and OxPL-apo(a)
1.	Cardiovascular Risk Stratification

•	 Elevated OxPL-apoB and OxPL-apo(a) are independently associated with ASCVD events, 
vulnerable plaque, and coronary calcification.

•	 OxPL-apo(a) levels correlate with Lp(a) levels but also reflecting the inflammatory potential of 
Lp(a), offer added prognostic value.

2.	Monitoring Lp(a)-Lowering Therapies
•	 In clinical trials of pelacarsen (antisense oligonucleotide), siRNA therapies such as olpasiran, 

or assembly inhibitors such as muvalaplin, OxPL-apoB and OxPL-apo(a) levels decline 60-90%, 
supporting their role as sensitive pharmacodynamic markers.

•	 These reductions reflect meaningful improvements in oxidative lipoprotein burden and  
vascular inflammation.

3.	Residual Inflammatory Risk Assessment
•	 Patients with controlled LDL-C but elevated Lp(a) may harbor high OxPL-apoB or OxPL-apo(a) 

levels, indicating persistent atherothrombotic risk
•	 Because these measures are independent of most cardiovascular risk factors, they may be used 

alongside hsCRP and IL-6 to complement inflammatory risk panels.
4.	Drug Development and Mechanistic Studies

•	 Both biomarkers can serve as mechanistic endpoints in early- and late-phase clinical trials 
targeting lipoprotein oxidation, immune modulation, or Lp(a)-lowering.

•	 Applications include cardiovascular outcome studies, atherosclerosis regression trials, and 
imaging biomarker substudies.

Conclusions
OxPLs are potent mediators of inflammation and atherosclerosis. Their presence on apoB-containing 
lipoproteins—especially Lp(a)—provides a robust biomarker for cardiovascular risk. OxPL-apoB integrates 
genetic, inflammatory, and oxidative information, offering a comprehensive perspective on risk prediction. 
Measurement of these biomarkers can refine clinical risk stratification and guide therapeutic interventions, 
advancing personalized cardiovascular care.

Why Partner with Medpace?
Medpace’s central laboratories offers a unique advantage for Sponsors seeking advanced biomarker 
analysis through its exclusive research rights from Kleanthi Diagnostics for OxPL-apoB and OxPL-apo(a). 
These assays are derived from and validated against the original gold-standard methods developed in 
Dr. Sotirios Tsimikas’ laboratory, ensuring scientific rigor and reliability. As the only reference lab to 
offer both OxPL-apoB and OxPL-apo(a) testing, Medpace also provides optional panels including Lp(a), 
Lp(a)-cholesterol, apoB, and inflammatory markers for comprehensive lipid and inflammatory profiling. 
Developed in collaboration with leading experts in Lp(a), oxidized lipids, and lipoprotein biology, these 
assays are fully suited for both GCP-aligned clinical trials and observational research.
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